J/ψ in sPHENIX p+p collisions Trigger efficiency and expected yields Sasha Lebedev (ISU) ### Trigger rejection power (single 4x4 tower) PHPythia8 MinBias events (SoftQCD:nondiffractive = on) #### pre-CDR Fig. 5.29 #### Trigger definition: - 1. Go through all 4x4 tower combinations with step size of two towers. - Sum 8-bit truncated tower energy within the 4x4 towers, where 8-bit truncated tower energy = floor(E_{Tower} / (50 GeV/256)) * (50 GeV/256). - 3. Get the maximum (Sum 8-bit truncated tower energy within the 4x4 towers) in the event, cut on it. ### Trigger efficiency for J/ψ (single 4x4 tower) Can we get to lower p_T by using two-cluster trigger and cutting on invariant mass? #### Two-cluster trigger rejection power Maximum invariant mass of two 4x4 tower clusters, GeV - 1. Select all 4x4 towers with truncated sum above certain threshold - 2. Calculate invariant mass for all pairs - 3. Select maximum invariant mass in an event, and consider trigger fired if it is above 2.5 GeV Black: both clusters above 0.5 GeV Blue: both clusters above 1 GeV Red: one cluster above 0.5 GeV, the other above 2.5 GeV #### Two-cluster trigger efficiency #### Expected J/ψ yield in p+p ^{*} ppg104; Phys. Rev. D85, 092004 (2012) Expected number of J/ψ $p_{T} > 1 \text{ GeV/c}$ in 7350B p+p collisions ### Expected number of J/ψ with trigger efficiency Red: $p_T > 1 \text{ GeV/c}$ Blue: $p_T > 2 \text{ GeV/c}$ Solid symbols: before trigger efficiency. Open symbols: including trigger efficiency (3 GeV cut). #### Expected invariant mass distributions in p+p $p_T > 1 \text{ GeV/c}$ Same code used for Upsilons and J/ψ in Au+Au Combinatorial background only. ## R_{AA} uncertainty from p+p measurement #### Final R_{AA} statistical uncertainty The main source of statistical uncertainty of R_{AA} indeed comes from Au+Au measurement. p+p contribution is negligible except, maybe, the highest p_T point.